Office of the Controller of Examinations Exam Year: 2081, Mangsir(Model Question)		Exam Roll in words:		
School: SOE		Level: BE	Invigilator's Sign:	
Program: BCE		Year/Part: III/I	Superintendent's Sign:	
Subject: The	ory of Structure II (EG603CE)		Code No	
i. Ans ii. The	×	X Iultiple-Choice Questions' Answe rough work.	er Sheet. Code No.	
GROUP A (Mul	tiple-Choice Questions)	[10x1=10]	Time: 20 Minute	
1) The number satisfied for s a. b. c. d	of independent equations to be static equilibrium of a plane structur 1 2 3 6	6) parabolic a e is horizontal a. is b. is c. re d. b	rch, if one of the supports settles ly, then the horizontal thrust s increased s decreased emains unchanged becomes zero	
a. 2) If there are n reaction com the degree o plane frame a. b. c. d	o n unknown member forces, r unknow ponents and j number of joints, then f static indeterminacy of a pin-jointe is given by m+r-2j m-r+2j m+r-3j m+r+3i	wn 7) Which of th n analysis is id a. S b. C c. M d. M 8) A single roll 15 m span	ie following methods of structural a force method? Slope deflection method Column analogy method Moment distribution method None of the above ling load of 8 kN rolls along a girder of a. The absolute maximum bending	
3) The deflection be obtained a. b. c. d.	on at any point of a perfect frame ca by applying a unit load at the joint in vertical direction horizontal direction inclined direction the direction in which the deflectio required	n moment w a. 8 b. 1 c. 3 d. 6 9) In a simpl flexural r	vill be 3 kN.m L5 kN.m 0 kN.m 50 kN.m y supported beam of span L and gidity El the total deflection under	
4) The Castiglia compute def a. b. c. d.	ano's second theorem can be used to lections In statically determinate structures for any type of structure at the point under the load only for beams and frames only	only a. $\frac{V}{2}$ b. $\frac{V}{4}$	trated load W acting at the centre am is <u>VL³ 6EI WL³ 48EI WL³</u>	
5) For a two-hi down vertica a. b. c. d. e.	nged arch, if one of the supports set illy, then the horizontal thrust is increased is decreased remains unchanged becomes zero For a symmetrical two hinged	tles d. $\frac{1}{1}$ 10) The yield defined a the yield a. t b. t c. n	$\frac{NL^{3}}{16EI}$ moment of a cross section is s the moment that will just produce stress in, the outermost fibre of the section the innermost fibre of the section neutral fibre of the section	

Marks Secured:		-
In Words:		Corrected Fill
Examiner's Sign:	Date:	
Scrutinizer's Marks:		 Incorrected Fill
In Words:		_ 🔊 🚯 🔘 🔎
Scrutinizer's Sign:	Date:	V

1. A B C D	6. A B C D
2. A B C D	7. A B C D
3. A B C D	8. A B C D
4. A B C D	9. A B C D
5. A B C D	10. A B C D

Manmohan Technical University Office of the Controller of Examinations Exam Year: 2081 Mangsir

Exam Year: 2081, Mangsir						
School: SOE		Level: BE	Time	: 3 Hours		
Program: BCE Year/Part: III/I		Full N	larks: 50			
Subjec	t: Theory of Structure II (EG603CE)					
√	Candidates are required to give their of	inswers in their own word	ls as far as practicable.			
√	The figures in the margin indicate Ful	l Marks.				
v	Assume suitable data ij necessary.					
GROUI	GROUP A (Multiple-Choice Questions in separate paper)					
GROUP B (Short Answer Questions - Attempt Any Eight)			[8×2=16]			
1.	Explain statically indeterminate s	structures along their a	idvantages and			
	disadvantages.					
2.	Define strain energy. Also derive	strain energy due to be	ending.			
3.	3. State and prove Maxwell reciprocal theorem.					
4.	Define and explain the following	terms:				
	a. Primary Structure					
	b. Redundant Force					
	d. Degree of Kinematic Inde	terminacy.				
5.	Explain the principle of moment	distribution method w	ith an example.			
6.	Define plastic hinge? Also compa	re plastic and elastic hi	nges of a structural system.			
7.	State Muller Breslau principle for	influence line diagram	n with an example.			
8.	Show that there is no bending mo	oment at any section in	parabolic arch(three			
	hinged arch) subjected to uniform	nly distributed load ov	er entire span.			
9.	Explain local and global coordina	te systems.				
GROUI	P C (Long Answer Questions - Attempt	Any six questions)		[6×4=24]		

10. Determine the external and internal degree of static indeterminacy and also the kinematic indeterminacy of the structure give below.

11. Determine the reaction at the roller support B of the beam shown below by using consistent force method, EI is constant

12. Determine the rotation at C using Castigliano's second theorem.

[4]

[4]

13. Determine the member end moments for the continuous beam shown below by using moment distribution method.

14. Find the bending moment at a given section x-x of the following loaded two hinged parabolic arch due to give loading. Take $EI = 10000 \text{ kNm}^2$

15. Determine the collapse load in the portal frame shown below.

16. Draw ILD for the support moment at A by computing the ordinates at 3 meter intervals.

[4]

[4]

[4]

[4]